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Abstract
Real-time rendering of photo-realistic humans is considerably outside the scope of current consumer-level computer
hardware. There are many techniques, which attempt to bridge the gap between what is desired and what is possible.
This paper aims to give an overview of the techniques designed to alter the complexity of the model’s geometry
(level of detail), or replace it with a flat image (visual impostor) and to improve the lighting model (lighting and
shadows). Recent years have shown a boom in the power and availability of consumer-level programmable graphics
processors, thus techniques that make use of these features are coming to the forefront.
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1. Introduction

The desire to render the world around us is common to
many applications. As part of this ‘virtual world’ it is nat-
ural to include representations of humans. A realistic vi-
sual approximation of a human requires a polygon mesh
of significant complexity, especially as it has to be suf-
ficiently tessellated to allow smooth deformations of the
model.

Visualizing one virtual human in real-time can consume a
high proportion of processing time. In many situations it is
not one, but a crowd of humans, which need to be rendered.
The common aim of all of the papers discussed here is to
reduce the computational expense of a particular element of
the avatar, allowing interactive frame rates. In addition to this,
the aim is to free the CPU to handle other elements of the
simulation, e.g. A.I., I/O, or physics.

The current growth in power of consumer-level graphics
processors is significant and with this many features are pro-
vided which are designed to facilitate efficient rendering of
scene. As the growth in power continues, so does the desire
to render even more complex scenes with realistic lighting.
Visualizing virtual environments is a huge area of research,
with many inter-related fields. However, this paper aims to

cover only recent advances in the field applicable to the vi-
sualization of crowds of virtual humans.

What particular problems need to be overcome in visual-
izing virtual humans? The human body needs to be modeled
as a deformable structure, thus many of the traditional tech-
niques that are designed for rigid body techniques are not
applicable. One partial solution is to split the human body
into a series of rigid elements, considering each element as
an individual body on which to apply the techniques. As many
comment, including Aubel et al. [1], this causes problems at
the joints (the boundaries between the rigid elements) that
have to be carefully maintained to avoid cracks appearing.
As with all deformable body work the mesh may be suffi-
ciently tessellated in its rest pose. However, as the character
moves and bends the model may be too coarse to give realistic
deformation of joints.

Virtual humans also have further complications over stan-
dard deformable bodies. The human visual system puts a
large emphasis on the human face and thus any interaction
with a virtual human should be echoed in facial expression
as well as the actions. Realistic lighting and self-shadowing
contribute heavily to how we see facial expressions. This is
very computationally expensive and has only recently been
contemplated for real-time circumstances.
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In this paper, level of detail (LOD) methods are first ex-
amined, looking at mesh decimation and mesh refinement
techniques. Image-based rendering (IBR) techniques are ex-
amined for rendering crowds, and finally real-time shadow
and lighting techniques are examined. Before examining the
techniques, a quick overview of traditional human anima-
tion is given. It is useful to have an understanding of some
popular methods for the animation of human meshes before
considering how to increase the rendering speed of the scene.
Occlusion is another large area, of which little has been fo-
cused directly on the rendering of crowds. However, Cohen
et al. [2] present an excellent survey of visibility methods.

1.1. NURBS and Polygon Mesh Representation

The techniques in this paper concentrate on polygon repre-
sentation of human models. However, the use of NURBS
(nonuniform rational B-splines) is also common in the mod-
eling of virtual humans. NURBS have some advantages over
polygon meshes, their definition is more compact and na-
tively allows infinite smoothness. However, they are signif-
icantly more complex to handle due to topology and other
constraints. To render NURBS on traditional systems they
must be passed to the graphics API as a polygon list, which
negates much of the advantage of their description. A discus-
sion of the problems with using a patchwork of NURBS in
human animation is presented by Derose et al. [3]. Within the
paper an alternative is given in the form of a “Hybrid Subdi-
vision” method, which allows the incorporation of sharp and
semi-sharp features as well as smooth features of a mesh.
However, the method was never designed to be real-time and
thus no indication of the runtime performance of the imple-
mentation is provided.

The methods reviewed in this paper are almost all solely
based on the polygon mesh representation systems. The ma-
jority of the work on rendering virtual humans in real-time
has concentrated on polygon mesh representations due to the
fact that consumer-level hardware is optimized to handle such
representations. The performance hit of not using the modern
graphics cards hardware acceleration is high. Thus rendering
techniques which lend themselves to implementation, either
partial or fully, on the graphics processor unit (GPU) are in
the forefront. Whether this course of hardware development
leading the algorithm development is advantageous or not is
left to the reader to decide.

1.2. Mesh Key Frame Interpolation

Mesh key frame interpolation is one of the most traditional
starting points of animation. A polygon mesh was used to
describe the model and this mesh was manipulated to form
new poses, or ‘Key Frames.’ The idea stems from the days of
cell-based animation, where experienced artists would draw
the important key frames of a scene and junior animators
would fill in the in-between frames. In the same way an ani-

Figure 1: Example of vertex skinning. (left) Vertex skin and
skeleton bones; (right) skeleton bones.

mator would construct the important poses or ‘frames’ for an
animation and the computer system would smoothly move
from one to the next. The idea of using such a method to
implement key frame animation in Cg (Nvidia’s high-level
shader language) and thus have all the interpolation workload
shifted onto the graphics processor is presented by Fernando
and Kilguard [4].

In general, manipulation of the whole mesh on a per vertex
basis is too time-consuming and cumbersome for an animator.
Therefore, a way of defining movements at a higher level was
needed and, as ever programmers looked to nature. The aim
was to separate the work of animating the human from the
low level manipulation of the mesh itself. Key framing for
each pose is a very inefficient way of storing the data for an
animation. In addition in this form the animation is set so that
real-time adaptations cannot be easily made (e.g. via inverse
kinematics).

1.3. Vertex Skinning

Skinning is one popular technique for animating virtual char-
acters in a scene. With this concept a character is designed
as a set of ‘bones’ over which a skin mesh is applied and
attached. The bones are then rotated and translated to give all
the posture possibilities for the character. Over this skeleton
a ‘skin’ mesh is applied. In this way it allows realistic ani-
mation without having to think about how each vertex in the
mesh moves, only the overall changes involved. Each vertex
in the skin mesh is attached to one or more bones and, for each
bone a weighting is given. Using this matrix of weights the
vertex position can be calculated by summing the weighted
average of the bone positions. Figure 1 shows an example of
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vertex skinning. On the right of the figure is the underlying
bone structure upon which the animator works. On the left,
the same bone structure is shown with a wire frame represen-
tation of the skin.

One of the advantages of vertex skinning is that the skin
can be modified irrespective of the bones, as long as the
weights are appropriately adjusted. The cost of manipulat-
ing the skeleton is a constant overhead; this is insignificant
for normal models as they include very simple bone mod-
els of the human body. The ability to adjust the skin mesh
without having to redefine the animation is highly desirable,
making it possible to use level of detail techniques on the
skin for example.

1.4. Combining Key Frame and Vertex Skinning

As mentioned Vertex Skinning allows the animator to define
a set of bones with which the animation of the character
is driven. However, how the manipulation of the bones is
defined can take a number of forms. Key frame interpolation
can be used to blend between bone positions. Kinematics
can also be used to define how the bones are moved, which
is an advantage if the animation of the character needs to
be affected by external influences. At the present time key
frame interpolation is often favored due to its lower runtime
overhead, and the ability to be easily hardware accelerated.

The animation of facial expressions is often handled sepa-
rately from the other character animations. A boneless, mesh
only, key frame interpolation can be used and this is often
constructed from motion capture. An extension of the bones
concept is to use pseudo-bones to model the muscle groups
in the human face. An example of this implementation is
NVIDIA’s ‘Dawn’ demo [5].

2. Level of Detail

LOD techniques aim to change the geometric complexity of a
polygon mesh, while retaining the visual integrity. LOD tech-
niques are often considered for systems where the rendering
bottleneck is on the number of polygons that the system can
process; the aim is to make more ‘effective’ use of the num-
ber of polygons in the scene. The area of LOD can be split
into subsections; the first consists of the opposing strategies
of mesh decimation and mesh subdivision techniques. In ad-
dition there is the separate area of the error/decisions metrics
used to control the LOD strategies.

In the field of virtual humans we mainly consider de-
formable bodies, not the traditional rigid body work that is
used in many of the applications, most commonly architec-
tural walkthroughs and terrain visualization. However, many
of the techniques can either be applied to the vertex skin (as
view-independent simplification), each part of a connected
semi rigid body approximation, or extended to handle non-
rigid bodies natively.

2.1. Static Mesh Decimation Techniques

As early as 1976 James Clark considered the benefit of mul-
tiple resolutions for models within a scene [6]. The use of
hand prepared multiresolution models was a common early
implementation of this concept. However, hand preparation
is very time-consuming and thus automation techniques were
adopted. There are many applications that still use static LOD
as the main rendering acceleration method. Often static LOD
is used as a preprocessing step for other methods to bring the
model to a desired complexity.

An example of a mesh decimation algorithm, which has
the ability to join unconnected regions, is given by Garland
and Heckbert [7]. The algorithm is offline only, based on
contracting pairs of vertices. The main body of the work is
upon how the pairs are selected, with each valid pair be-
ing ordered based upon the error quadric associated with it.
The lowest ‘Cost’ pair is chosen each iteration and the er-
ror values recalculated for the remaining pairs. It is clear
that, in its native form, the method places neither emphasis
on silhouette preservation nor on any other additional con-
straints. An additional interest in the paper is that the authors
adapt the algorithm to include constraints to preserve bound-
aries and stop mesh inversion. This philosophy of tailoring
algorithms to remove their generality, while improving per-
formance in a specific case lends itself to working with vir-
tual humans where visual importance is not uniform across
the mesh. A good starting point on examining static mesh
decimation and LOD techniques in general is David Luebke
et al. [8].

2.2. Dynamic Mesh Decimation Techniques

Progressive meshes were introduced by Hoppe [9–11] and
this work formed the basis of many further papers. One of
these was Sander et al. [12], which showed how it was possi-
ble to produce acceptable texture mapping without significant
‘Slippage’, on a progressive mesh. Dynamic mesh decima-
tion is only useful if the gain from the reduced complexity
mesh outweighs the time to compute the decimation. This
overhead must be minimized if mesh decimation is to be
used for large crowds. The following two papers examine the
possibility of using the GPU for mesh decimation.

Shiue et al. [13] discuss a possible solution for mesh mu-
tation on future GPUs. In this paper, a framework for a mesh
processor that is destined to run solely on a GPU is presented.
Modern graphics cards have sufficient memory and efficient
vertex processors to yield a significant increase over a CPU
only implementation. However, there is one main stumbling
block, the current generation of GPUs at the time were the
NV30 and R3XX, which did not present the programmer with
random memory access which is required for this framework
to work. However, in NVIDIA’s 6800 (NV40) texture access
has been added to vertex shaders, a step toward completely
free memory access.
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An interesting image quality metric was introduced by
Southern in an earlier paper [14]. In this paper, it was shown
that decay of the volume of a simplified object is significantly
correlated with the decrease in image quality and the quality
of the silhouette.

The implementation of their algorithm makes use of vertex
programs and this gives them access to the SIMD nature of the
current GPUs. The paper presents a single figure comparison
for the difference between their software implementation and
their hardware optimized solution. ‘Our experiments with the
non-volatile path . . . show a speed up from 71.42 seconds
per frame in the case of software interpolation, to between
12 and 14 frames per second on a Athlon 500 MHz processor
using an ASUS v8200 Geforce 3.’ This is nothing short of a
stunning increase, approximately a 800-fold increase in speed
due to the use of hardware acceleration. The speed up may
well be significantly more pronounced due to their algorithm
being heavily optimized for the hardware, at a detriment to
the running time of the algorithm in software.

2.3. Mesh Subdivision Techniques

The ability to increase detail in a mesh is also sometimes
desirable. The use of static techniques can allow smoothing
on a model which does not have the desired complexity level.
Dynamic applications allow for scalable levels of detail as a
camera approaches a model and also increases tessellation
of areas which are to be deformed. Loop’s [15] paper is one
of the base points for many mesh subdivision techniques.
Others include Zorin et al. [16] who extended the traditional
butterfly method while reducing the number of artifacts on
irregular topology. This modified butterfly technique, along
with the Loop method and Catmull–Clark subdivision, form
the standard against which most subdivision techniques are
compared.

Calculating the physical simulation of a model is very com-
putationally expensive, even for a simple model. Kähler et al.
[17] define a coarse mesh which they use for their physical
model, over which they have a dynamically refined geometric
mesh. The refinement system they use is based upon Loop
subdivision [15]. However, it attempts to do multiple stages
of refinement each step. The method starts with the assump-
tion that the mesh is of sufficient quality and thus does not
need refining in its undeformed state. On deformation the
algorithm checks if any regions are now above a curvature
threshold and, if so, it refines them using an edge-splitting
method. The curvature function is based on the dot product
of the two vertex normals of an edge. The subtriangles are
produced efficiently by a lookup table, which stores the 27
different possible combinations of edge splits.

The method they propose would be simple to implement,
due to the lack of complex metrics and the fact that the original
mesh is not updated. The reason presented for not storing
the refinements is that rendering is an insignificant overhead

compared to physical simulation. While this may be true in
this case, it seems extremely wasteful not to exploit the frame
coherency of the mesh.

A hardware-only solution would be advantageous in the
sense that the user would be able to use existing methods
with no changes to their code. Also when the extra triangles
are created in hardware, less data need to be sent over the
AGP data bus. Vlachos et al. [18] take this approach of im-
plementing local mesh subdivision in hardware. Each triangle
is replaced with a cubic Bézier path, which matches the point
and normal information of the vertices of the flat triangle.
This is the only information used, and thus patches do not
join with tangent continuity except at the corners. Cracks are
avoided due to each edge being shared between patches and
the algorithm is consistent in its output.

The strength of the paper’s work is also its greatest failing.
The algorithm runs independently of the user’s code, and thus
control over its results is minimal. The results shown are an
improvement over the nonsubdivided models; however, they
possess a similar look. The authors call this an ‘Organic look’;
however, this consistent appearance could be undesirable in
the general case.

O’Sullivan et al. [19] present the on-going work on a LOD
framework not only for geometry but for motion and behavior
as well. As part of this framework they used mesh subdivision
upon simple starting meshes to give control over the geomet-
ric complexity of each Virtual Human. They show compar-
isons of linear, butterfly, and loop subdivision on a human
hand and make use of surface masks to allow the boundaries
of the meshes to be maintained, along with creases in the skin.
Without these crease masks, all fine detail will be smoothed
out. The paper examines many areas of simulating human
interaction and is of interest to all trying to simulate a small
number of virtual humans interacting in a social environment.

The focus of this paper has been on polygon-based meth-
ods; however, it should be noted that tetrahedral-based work
has been progressing on similar ideas. For objects that need
to be cut and thus have solidity as opposed to being a hollow
skin, tetrahedral meshes are more natural. Molino et al. [20]
present a method for producing efficient tetrahedral meshes.

2.4. Clothing Simulation

An important aspect of visualizing virtual humans is creating
realistic clothes upon them. Traditionally, the clothes have
been modeled as part of the human mesh. Thus, it has not been
possible for the clothes to behave as clothes; they cannot bend
or crease as the human moves. It should be noted that realistic
cloth modeling is very expensive and gives small visual gain
in quality to a user not focusing on the clothes of the model.
Ivanov et al. [21] suggest the application of online clothes
ordering as an application, where it is desirable to see how
clothes look upon a virtual human in real-time. Their design

c© The Eurographics Association and Blackwell Publishing Ltd 2005



G. Ryder and A. M. Day/Survey of Real-Time Rendering Techniques for Crowds 207

ethos mirrors that of many real-time applications; fidelity is
sacrificed in an attempt to dramatically increase rendering
speed.

Mass-spring systems are one of the lowest cost methods
for modeling the forces on a deforming mesh and are the most
commonly used in real-time situations. Ivanov et al. [21] also
base their implementation on a mass-spring model. How-
ever, with added constraints to attempt to overcome some
of the drawbacks. They cite that the problem with many
current models is that they are ‘super-elastic’ and the ma-
terial is allowed to unrealistically stretch large distances. By
adapting the velocities associated with the deformations, it
is possible to limit the maximum length each spring can
reach.

Collisions detection for a cloth draped over a virtual human
in real-time is prohibitively expensive in its native form. The
method of collision detection is based on image space tests,
which reduces the complexity of the collisions detection to a
2.5D problem. The method needs a normal map for each dis-
creet pose, which would be a prohibitively large number of
textures for an avatar with a large number of possible anima-
tions. This method is independent of the human’s complexity
and is of linear complexity on the number of vertices in the
cloth.

On a SGI (R12000 processor) the implementation pre-
sented took over 1 second to ‘dress’ a human model in a
shirt. While this frame rate is not of real-time standards, it
is approaching it. Therefore, this method cannot be recom-
mended for a situation other than where cloth dynamics are of
the utmost importance. In this small number of cases it may
be possible to extend the method using hardware acceleration
to get almost real-time results.

Daubert et al. [22] concentrate on attempting to visually
replicate the complexity of woven garments in real-time. Due
to a limited amount of geometric primitives that can be al-
located to the material in a real-time system, modeling each
weave separately in geometry would be unfeasible. Texture
mapping can replicate small details, however, at closer in-
spection the true flatness of the surface is apparent. While
bump mapping and now normal map techniques have come
some way to correct this problem, there is still a lack of occlu-
sion and self-shadowing effects required for a more realistic
appearance.

In the paper, Daubert et al. [23] model a single stitch of
the repeating pattern and from this generate normal and light-
ing maps. With this information IBR methods can be used to
replicate and relight the image. Data acquisition is a signifi-
cant problem, as with all systems that use BRDF’s to model
the physical properties of a material. This system takes 15–
45 minutes to construct the required information from a 3D
model. Due to the repeating nature of the material they are
modeling, aliasing problems are significant and thus they em-
ploy a MIP-Mapping-based solution.

The results of this work are still too slow for real-time
(1 fps), however, with further work on incorporating the use of
modern graphics hardware the authors believe it is possible to
improve this to truly real-time rates. Again, unless the clothes
modeling is extremely important to the application, even with
significant improvements it consumes an unfeasible amount
of processing time.

Volkov and Ling [24] present the idea of adaptive LOD for
physical simulation of cloth meshes. Areas where the cur-
vature is beyond a threshold are refined and those that fall
below are simplified. In this way the flat areas of the cloth
that would otherwise be overly tessellated for a simulation,
can be modeled simplistically, leaving the areas of folding
to be concentrated on. The aim of this work is for a higher
performance cloth simulation, and while their results are not
real-time they are a significant improvement over cloth sim-
ulation without such techniques.

It is still some time away before we can have truly believ-
able simulations of the clothes upon a virtual human being
calculated in real time. Baraff et al. [25] have done much work
in the non-real-time field and have shown how important cor-
rect clothing is to stop humans looking rigid and plastic. A
clothing simulation for an individual is still not at real-time,
clothing simulation for a whole crowd will continue to be
outside the power of computer systems for the near future.

2.5. LOD Selection

Southern et al. [26] presents a paper that concentrates on
the implementation of LOD tailored toward exploiting the
SIMD architecture of modern programmable graphics hard-
ware. Within this paper they focus on the factors which govern
a seamless change. They propose these to be:

� Visual continuity. The eye should not able to detect any
discrete changes in the model.

� Geometric continuity. Only at the position of an existing
vertex can another vertex be added or removed.

� Frame-rate continuity. A consistent frame refresh rate
is desirable, which implies each frame takes a constant
amount of time to render irrespective of the geometric
complexity within the view frustum.

As mentioned in the paper, visual continuity and frame-
rate continuity are often impossible to be satisfied in a gen-
eral environment at the same time. They call the times where
both cannot be maintained as a ‘volatile scene’, where large
amounts of the scene are being changed between frames. Ref-
erence is made to Funkhouser and Sequin [27] which states
that it is only by prediction that a volatile scene can be handled
without breaking frame-rate continuity or visual continuity.
Hidalgo [28] is an example of method which implements
a motion prediction method combined with other speed-up
techniques with the aim of keep a constant frame rate. The
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Figure 2: Implementation of a crowd with static impostors.

system uses a Kalman filter to predict position and orienta-
tion of the camera. While motion prediction of the viewing
position in the field of virtual humans could be useful, with
a dynamic scene there would be several extra considerations
that may not make it as suitable solution. It would require a
crowd behavior system which was deterministic, for at least
the near future.

3. Visual Impostors

Image-based rendering (IBR) systems have been subject to a
large amount of research. Visual impostors introduce image-
based techniques into a geometric rendered environment. The
aim is to replace sections of the scene with an image repre-
sentation textured onto a simple, normally a quad, geometric
shape. In this way the rendering time of an object is reduced to
a constant texturing overhead. Figure 2 shows an implemen-
tation of static impostors, with the white outline indicating
the edge of the billboard.

3.1. Static Impostors

With static impostors the textures are generated offline, stored
and merely loaded at runtime. Each texture is normally valid
for a limited group of viewpoints. Through the use of cer-
tain image manipulation techniques, e.g. image warping and
storing extra information, e.g. multi-depth images (MDI), it
is possible to extend the set of viewpoints in the image it is
valid for. Tecchia and Chrysanthou [29] cover, in addition to
the problems of graphically rendering a large crowd, handling
the collision and behaviour of the virtual humans in real-time.
Both of these topics are outside the scope of this paper, but are
of interest to anyone trying to construct a simple simulation
on which to test the techniques.

The graphical techniques implemented by Tecchia and
Chrysanthou [29] use no image warping or blending of the
static impostors. This allows for a larger amount of the CPU
power to be dedicated to rendering the scene. The direct side-
effect of this is that it reduces the viewing area for which an

impostor is valid. In an attempt to counteract this the method
does not always choose an impostor plane perpendicular to
the view point. The concept behind this is to choose a plain
that minimizes the visual error between two different pregen-
erated views. They define a method for choosing this plane,
which minimizes ‘the sum of the distances of the sampled
points, and the projection plane given a camera position from
where the sample image is created’. Through this technique
the number of impostors needed to be stored is reduced while
keeping the same visual quality. Dynamic impostor systems
could also make use of this work and thus increase the time
of validity of each impostor. However, it would only be ben-
eficial if an implementation of this technique took less time
to calculate than the saving in time over the fewer refreshes
of the impostor in question.

To reduce the storage overhead of the textures the prop-
erty that humans are asymmetric is exploited, along with the
use of the OpenGL texture compression extension. Even so,
storing a different texture for each human in a scene becomes
impractical as the number of humans in the scene increases.
Changing the shape of the texture at runtime to resemble dif-
ferent human forms is a very complex task. For simplicity and
speed only a technique which gives color variety to the char-
acter’s skin, clothes, and hair is used. With the alpha channel
of their texture they can divide up the character into differ-
ent sections and color each one separately using multipass
rendering.

Static impostors alone, as used by Tecchia and Chrysan-
thou [29], lead to a very limited crowd scene. As mentioned,
the texture overheads for static impostors are significant for
a single animation and a single model. Only a small number
of possible animations could hope to be represented with im-
postors without a crippling number of textures. Also, alaising
effects become significant with static impostors as they ap-
proach the camera if they are not of a sufficient size. Again a
compromise between impostor size and memory consump-
tion has to be made.

With static impostors alone it is hard to allow for external
factors, such as changes in lighting within the scene. There
has been some work by Aubel et al. [1] and Tecchia and
Chrysanthou [29], where normal maps are used to imple-
ment view-dependant lighting. Through the use of per-pixel
shading via fragment shaders, normal maps can be efficiently
implemented on modern graphics processors. Loscos et al.
[30] discuss many of the problems with handling shadows on
impostors (see Section 4).

Billboard clouds are an extension of the static impostor
concept. 3D models are simplified onto a set of planes, each
plane with texture and transparency maps. In Decoret et al.
[31] make the claim ‘for extreme simplification our approach
combines the strengths of mesh decimation and image-based
impostors.’ In the paper a weakness of LOD methods is
identified, which is their inability to satisfactorily represent
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extreme simplification representation of complex, discon-
nected objects. Impostors can combine multiple objects well
but suffer from limited parallax; while billboards can fuse
multiple objects without sacrificing parallax effects. While
the method is designed only for static models, it may be pos-
sible to extend it into handling limited dynamic objects, e.g.
a walking human at a distance. Careful memory management
would be needed, due to the need to store 30–100 textures
for each model.

3.2. Dynamic Impostors

Instead of converting the geometry to a texture offline, the
impostors can be generated for the current view. Aubel et al.
[1] present a completely IBR method for virtual humans.
They use a skeleton and skin method to represent a virtual
human. If the posture, defined by the bones, varies from the
current pose by more than the error threshold then the image
is updated. In this way only a small number of key frames of
the animation are shown to the viewer, relying on the viewer’s
brain to fill in the missing frames. This method approximates
many animations successfully; however, any small subtleties
in the animation are lost. For example, breathing or other
small movements would fall below the error threshold and
therefore be lost.

Aubel et al. [1] also differ from many methods by not using
a single quadrilateral plane to represent a virtual human. One
reason given is that a single plane quadrilateral can cause
visibility issues. Instead the virtual human is divided up into
‘coherent parts’, where each part is a section which cannot
overlap itself. They provisionally generate 17 sections for a
virtual human. One advantage of this technique is that if only
a part of the character is being animated, for example only
one arm, then a subsection of the impostor is all that needs
updating.

In a later paper, Aubel et al. [32], a LOD for the skins of a
virtual human is described. This LOD structure is for the skin
mesh only, not bones and thus it cannot do LOD of animation.
They present a body representation that has the ability to gen-
erate skin deformations due to muscle contractions, a feature
rarely seen. It is from these simplified geometric meshes that
the impostors are generated. The smaller the projected size of
the impostor onto the view plane, the smaller the generated
texture, which avoids aliasing effects of scaling incorrectly
sized impostors. Like many impostor techniques, trying to
maintain a constant frame rate is a challenge. The updates
are prioritized; only allowing a certain amount of geometry
to be rendered and, thus impostors, each frame. This idea
is based on the belief that the human visual system is more
willing at times of rapid motion to accept smooth movement
at the expense of lower image quality.

Due to the fact that the impostor is being generated in the
current scene and in the current lighting model, the impostor
is able to display these attributes. An approximation of view-

dependent lighting is possible; however, this can be visually
distracting if the impostor is not updated regularly enough.
While techniques such as image warping methods for tex-
tures can be used to extend the life of an impostor, they can
not handle adjusting the view-dependant part of the lighting.
Through the use of normal maps, it is possible to add light-
ing to impostors. However, at the current time, there is no
efficient way of constructing and using normal maps solely
on the graphics card without having to move them to main
memory for format conversion.

4. Lighting and Shadowing

The human visual system makes heavy use of lighting and
shading to interpret the world around us. Photo-realistic light-
ing is very complex to simulate and at the present time it is
far beyond the real-time capabilities of current high end com-
puter systems. Until the computational power grows to the
extent a real-time full radiosity solutions is possible, tech-
niques are needed to bridge the gap between what is desired
and what is possible.

4.1. Improved Lighting

Self-shadowing and self-inter-reflection play a subtle but a
significant part in the lighting of human faces. Without it fa-
cial expressions are harder to see and so the virtual humans
look false and lifeless. Radiance self-transfer is costly to com-
pute at runtime and thus it is advantageous to be able to handle
parts of it offline. Sloan et al. [33] use the idea of attempting
to parameterize the lighting equations, moving some of the
calculations offline and constructing lighting matrices which
can be used at runtime. The work in this paper and in Kautz
et al. [34] are very closely linked. They describe a method
based on spherical harmonics and with this the light integral
at a point can be limited to 25 calculations. While this is still
a significant number, it is possible for use with real-time ap-
plication due to the power of modern graphics cards, if it is
used sparingly. It should be noted that to gain truly interac-
tive frame-rates either a fixed light or a fixed viewpoint is
need. The results presented do not make full use of modern
hardware acceleration, as the features were not available at
the time of the paper. With this addition it may be possible to
get interactive frame rates without the heavy constrains of a
fixed point of view or a fixed light source.

In Bastos et al. [35] discussion is made on how modeling
the view-dependant elements of lighting in an architectural
walkthrough can greatly improved the photo-realism. The
aim is to introduce view-dependant lighting into a hybrid ge-
ometry and IBR system. While architectural walkthroughs
can take advantage of the static nature of the scene, it pro-
vides ideas which can be adapted for virtual humans. Through
their work of decomposing the lighting down into different
sections, it is possible to obtain glossy reflections in real-
time. One of the most attractive parts of their method is it
runs in constant time per reflector. This is ideal in a real-time
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environment to avoid frame rate ‘spikes’ which can severely
detract from the feeling of interactivity of a scene. There is,
however, significant storage overheads associated with this
method.

While glossy reflections do not play a large part in the
lighting of skin itself, there are certain circumstances where
is does play a larger part — when the skin is wet, e.g. rain
or sweat. In addition human hair and the synthetic fibers
that make up certain types of clothes, have significant glossy
reflection elements. Therefore, while such reflections do not
feature heavily in the displaying of humans at the current
time, they do form a vital part of the lighting model needed
for a realistic virtual human.

4.2. Shadows

Computer displays are flat, two-dimensional projections of a
three-dimensional world. Without lighting or movement any
shape looks as flat and two-dimensional as it truly is. It is
from motion and lighting that the human eye infers three-
dimensionality from the 2D projections we are presented.
However, the concept of shadows, while featuring highly in
the real world, has been either ignored or loosely approxi-
mated up until recently.

4.3. Shadow Volumes and Shadow Maps

Shadow maps, introduced by Williams [36] in the 1970s, are
an adaptation of the depth map idea. The main problem with
shadow maps is that they are texture-based solutions and thus
suffer aliasing when a shadow map’s element corresponds to
more than one screen pixel. Much research has been done
to combat the aliasing problems of shadow maps. However,
shadows maps are far less expensive to calculate than the
other main shadow technique, shadow volumes.

Shadow volumes avoid the problems of aliasing by being
geometry based. First introduced by Crow [37], a shadow
volume is a semi-infinite frustum extending back from the
edge of a polygon away from the light. Through the use of a
stencil buffer (available on most modern GPUs) shadow vol-
umes can be implemented in hardware. The shadow quality
is high with shadow volumes, though with many large shad-
owed areas in a scene it can soon consume the entire fill rate
of most modern systems. Thus shadow volumes are suited
to objects which need high-quality shadows and do not cast
large complex shadow volumes.

Fast calculation of shadow volumes utilizing hardware ac-
celeration has produced several proposed implementations.
McGuire et al. [38] is one paper that is of interest to all work-
ing in the field. In addition to the concepts of the algorithm,
the fundamentals of how to construct an implementation is
given in detail. The techniques’ aim is to reduce the amount
of rasterization traditionally involved with shadow volumes,
at the expense of increased vertex processing. This is due to
the fact that in the current architectures graphics algorithms

are fill rate bound as opposed to polygon bound. The algo-
rithm is split into two passes. The first pass, which they call
the ‘shadow determination pass,’ separates the screen-space
into regions of light and dark. This is the section that the work
focuses on optimizing. The second section is the ‘illumina-
tion pass’ which is used to compute the lighting for the lit
areas.

A major drawback of this method is that identical vertex ar-
rays are stored in the main system memory and the video card
memory. This has significant impact on the use of hardware
vertex skinning, as the same operations have to be replicated
in software on the vertex array in main memory. The reason
for needing to do this is so that the silhouette detection test
can be run on the deformed pose, not the static starting pose.

Brabec and Seidel [39] claim to have a system that solves
the main problem which McGuire et al. [38] suffer from. The
main interest of the paper is their method for silhouette de-
tection that is implemented solely on the graphics processor.
Potentially fast shadows for virtual humans could be possi-
ble with only minimal changes to the main program code,
through the use of a library shader with the method imple-
mented within it. The vertices, in world co-ordinate space,
are stored in a floating point texture. Each vertex is assigned
an index, which indicates where in the texture it is stored.
Once this texture has been constructed a silhouette detection
test can be done upon it.

The implementation of the algorithm highlights that with-
out advances in the current features of graphics hardware the
true potential is not realized. Texture access is not allowed at
the vertex shader level, where it would be far more natural
to process the vertex lists stored in the texture than at the
pixel level. Due to these restrictions, it is necessary to move
data from the two buffers, to main memory and immediately
move it back to the graphics card in the form of vertex at-
tribute data. Therefore, the paper proposes interesting ideas,
but it does not truly solve the problem.

A part solution to the problem of drawing shadows for
animated crowds being rendered using visual impostors is
presented by Loscos et al. [30] (based on the work by Aubel
et al. [1]). Two different elements of shadow computation are
considered, static geometry onto dynamic characters and dy-
namic characters casting shadows onto a flat ground surface.
The shadows produced are for a single, fixed light source
and are only sharp shadows. In this way, the solution can be
considered a work in progress, as they do not cover among
others the problems of dynamic characters casting shadows
onto each other. Figure 3 is an example implementation ex-
tended to multiple light sources.

The framework used for the rendering of crowds in the vir-
tual city makes a restriction on the scene being 2.5D. Height
maps are used to describe changes in the level of the scene.
The camera is limited to eye level and it is not possible to
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Figure 3: Implementation of shadow maps for static
impostors.

represent objects such as bridges and building overhangs. For
each building a shadow height map is constructed offline and
processed at runtime. If a character is within a shadow map,
the stored shadow height value is compared to the height of
the character. If the character is considered partially covered,
then a second texture is used to show the character’s legs to be
in shadow over the top of the impostor texture. Similarly if the
character is decided to be in full shadow, then a texture where
the whole character is in shadow is applied over the top of the
impostor texture. This is a fast but crude way of doing shad-
ows for impostors caused by static geometry (e.g. buildings).
The aim of their work is not simulation, but approximation of
shadows. The results are a significant improvement to current
shadowless crowd visualization techniques.

The casting of shadows from the characters to the ground
is based on the re-projection of the impostor onto the ground,
from the light source’s position. Again a full shadow texture
is used instead of the original color of the textures, thus giving
the impression of a cast shadow. The texture of the character
is already in memory, and therefore there are no extra stored
requirements for this shadow method. However, this method
only works onto a horizontal floor, it cannot cast onto other
objects be they static or dynamic. The result of their work
is the ability to handle shadows for approximately 10,000
crowd entities in real-time.

4.4. Hybrid and Adapted Shadow Methods

Shadow Silhouette maps, an extension to shadow maps pre-
sented by Sen et al. [40], yield higher-quality shadow bound-
aries than traditional shadow map methods. The method gen-
erates a depth map and a silhouette map in the first pass
for rendering from the view of the light. In the second pass
the scene is rendered from the viewer’s perspective. They
present the idea that the way to combat the problems with the

shadow boundaries is through the use of a silhouette map,
which stores extra information about the boundaries of the
shadow.

A silhouette map is defined as a ‘texture whose texels rep-
resent the (x,y) coordinates of points that lie on the silhouettes
of objects’ [40]. This is not a native texture format supported
by hardware acceleration, and thus a significant performance
penalty is incurred. The results of the implementation they
present are a marked improvement on the visual quality of
the edge boundaries of the shadows. An interesting point of
the work is that shadow silhouette maps use significantly
less bandwidth than shadow volumes, but the implementa-
tion showed no performance increase over shadow volumes.
This is explained by the fact that current graphics cards are
optimized to handle shadow volumes efficiently via the sten-
cil buffer. In its current form it is hard to justify the use of
silhouette maps as shadow volumes produce better quality
shadows faster.

Govindaraju et al. [41] combine shadow mapping and
shadow volumes in a hybrid method. The goal is to achieve
interactive shadows, where the light source is not fixed, on
very large models. The hybrid method they present has an
additional aim to significantly reduce the aliasing effects as-
sociated with shadow maps without incurring the heavy fill-
rate costs of only using shadow volumes. The main focus of
the work is splitting the rendering of the scene into different
sections, which can be run in parallel to each other.

Improved techniques for computing the potentially visi-
ble set (PVS) are presented, through the use of hierarchical
representation, LODs, and image-space occlusion queries.
PVS are computed for the eye and the light, and a cross-
culling method between the two PVSs is introduced. With
this system, models can be handled without topology or con-
nectivity assumptions. The implementation they present is
on three dual processor 1.8 GHz Pentium 4-based machines,
each with a NVIDIA Geforce 4. This allows them signifi-
cantly more processing power than most algorithm imple-
mentations considered in this paper, and as such the results
should be considered appropriately.

There are some strong features of this method, the light
source is not fixed and the shadows show little aliasing even
on long thin objects. It seems that it would be possible to
render a large crowd with high-quality shadows. The main
limitation of this method is that for each light introduced
into the scene, another graphics processor (and so another
machine) is required. In addition to the extra processors it
is not clear how large an impact on the rendering speed the
extra cross-culling and shadow computations would have.

Hasenfratz et al. [23] present an in-depth review of soft
shadow methods in real-time. The growth in this area is be-
ing driven by the development in power and features of the
modern graphics cards. The survey gives a good overview of
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the subject and is an excellent introduction to soft shadows
in real-time applications.

5. Supplementary Techniques

Modern Shader Languages allow, through a high-level lan-
guage, control over the graphics processor units (GPU). The
ability to control the way objects are shaded has existed in
offline rendering for a long time. The aim is that designers
can produce custom shading methods, specifically tailored
for the situation and thus get higher-quality results. The sec-
ond main purpose of high-level shader languages is to expose
programmers to the hardware accelerated commands avail-
able. In this way programmers can write shaders designed
to give realistic shading of skin, hair, or clothes with cus-
tomizations to the way lighting is calculated for each in a
way they would not be able to otherwise. In addition to this
they can implement features beyond just lighting, for exam-
ple vertex skinning or mesh mutation that take advantage of
the hardware accelerated vector processing.

The human visual system places a strong emphasis on the
human face, thus it should be given higher priority over other
elements of the representation. Paris et al. [42] propose a
reduced fidelity model for relighting facial images with the
aim of providing a real-time solution. Through the use of
parametric modeling of the skin, combined with textures to
add ‘roughness,’ they propose to relight captured images as
though they were part of the current scene.

Capturing the input image is nontrivial, as any parts of the
image that are over-or underexposed will cause loss of skin
detail for that section. Once the image has been captured, all
shading must be removed from the input images as a pre-
processing stage. The relighting of the picture algorithm is
essentially a Phong shading system with addition detail be-
ing provided from a texture. The eyes and mouth have to be
handled separately due to their problematic nature. Specular
highlights are added to the eyes by modeling them as hemi-
spheres. While this helps, the results for both eye and mouth
can give false visual clues to the viewer over where the light
is coming from due to shadow artifacts remaining from the
original images.

The resulting images, while a significant step above tradi-
tional polygon-based solutions, still do not look ‘natural’ to
the human eye. The speed of this method, using a Geforce
4 Ti 4400, is 60 Hz for multiple light sources for a complex
mesh (12,250 vertices). Thus, it is possible to incorporate this
method into a system for rendering virtual humans in real-
time. Their system does not exploit Vertex or Pixel shaders
and thus could be efficiently run on a wide range of systems.
One point made by the authors is that the inclusion of shad-
ows into the system, via shadow maps, causes a significant
performance hit and thus should be used sparingly.

Olano et al. [43] present the idea of extending LOD work
to include Shader LOD. The idea that objects can be drawn

with different complexity shaders is proposed, much in the
same way as objects are drawn with different geometrically
complex meshes. They show that with this scalable archi-
tecture the objects in the foreground can be rendered with
higher-quality shaders, at the detriment to less important ob-
jects in the scene. The main aim of the work presented in this
paper is to reduce the number of textures used per object for
the lighting and shading calculations. Modern techniques of
texturing objects often involve multiple textures to create the
desired effect, using the extra textures to store precomputed
expressions. Two separate simplification methods are dis-
cussed, firstly lossy simplification which replaces texturing
with an approximation. A least-squares error metric was used
to control this simplification. However, in the general case,
controlling the quality of the output is indicated to be prob-
lematic. Lossless simplification is the other method, which
works by reducing the number of textures used by combining
textures into a single texture.

While the number of textures access per object is reduced,
there is a significant increase in the number of textures need-
ing to be stored. Graphics memory on many modern cards
is plentiful but when there is use of multiple texture inten-
sive techniques, texture paging is needed. If the textures are
being swapped in and out of graphics memory too often this
technique will be outweighed by the time taking to move the
texture onto the graphics card memory.

Virtual human models are created in a number of differ-
ent ways. Many methods do not produce high enough quality
meshes and therefore it would be advantageous to preprocess
all meshes for a program. An example of this is in progressive
mesh and mesh refinement techniques, where a regular con-
nectivity is often a required for the algorithm to give satisfac-
tory results in real-time. A remeshing algorithm is introduced
by Surazhsky et al. [13] which is robust and does not have
unreasonable time requirements (approximately 10–20 sec-
onds for a under 10,000 polygon model). The method is based
on local operations on the mesh, thus avoiding the expensive
global parameterization of many previous techniques. The
techniques are designed for triangle quality, and while the
results are a good approximation of the original mesh, errors
are introduced. In the rendering of virtual humans in real-time
this error is likely to be insignificant to the improvement of
the quality of the mesh for LOD work.

6. Conclusion

LOD methods still suffer from one major drawback: at ex-
treme levels of simplification the model’s visual fidelity is
very poor. This makes them unsuitable for rendering crowds
of humans in real-time. However, when used in hybrid imple-
mentations, with IBR, LOD techniques show good promise
for rending virtual humans in the foreground. LOD imple-
mentations solely on GPUs are almost possible and thus the
penalty for adjusting the mesh at real-time should be signifi-
cantly reduced. One of the major remaining problems is frame
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rate spikes, which are common to LOD and visual impostor
work. At the present time most techniques are re-active not
pro-active in their handling of the viewer’s movement. The in-
corporation of motion prediction systems into these methods
should have significant benefits for frame rate consistency.

Current visual impostor implementations look very
promising for crowd simulation. Their ability for extreme
polygon reduction (unlike LOD) means an entire crowd can
be modeled without overwhelming the polygon capabilities
of a system. This paper identifies three main areas for future
research, first removing the 2.5D limitation common to the
majority of the methods without a prohibitive performance
hit. Second, visual variety in the crowd is currently extremely
limited. This is due to texture memory constraints, a different
texture cannot be used for each entity in the crowd. There-
fore, improved ways to give pseudo-variety are needed for
texture-based solutions. The memory overheads associated
with IBR for virtual humans need to be formalized, as other
parts of the scene may also use texture intensive techniques,
introducing the need for texture paging.

Finally, the casting of shadows by the impostors has only
been attempted partially for a crowd. Casting shadows onto
nonflat static geometry and onto other dynamic elements still
needs to be addressed. While many solutions exist for these
in other areas, due to the number of shadows needing to
be drawn, a lower cost (possibly lower accuracy) method
is needed. Normal maps allow for dynamic relighting of im-
postors; however, these can not be constructed and used at
runtime without format conversion, which makes them un-
feasible for dynamic impostor implementations. Lighting and
shading in real-time is an area where much research is being
undertaken. Virtual humans cannot take advantage of the op-
timizations that are used for static objects. Parameterizing the
lighting equations looks a promising technique, though im-
plementations for a deformable object do not run in real-time.
Accurate hard shadow techniques are possible in real-time
for a reasonable number of virtual humans, however a more
realistic soft shadow lighting model for a crowd of 10,000
humans is still unachievable on a consumer-level hardware.

In overview, visual realism is the main obstacle to be over-
come in the current real-time virtual human environments.
LOD for modeling small numbers of high detail deformable
models and IBR for entire crowds are tried and tested meth-
ods which are continuing to evolve. We are on the verge of
a significant improvement in visual quality, once the next
generation of GPUs on which the methods can be solely run
are released. Poor lighting models continue to plague a num-
ber of the current implementations and this is an area where
significant work is still needed for real-time virtual humans.
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